Model Selection in Historical Research Using Approximate Bayesian Computation
نویسندگان
چکیده
منابع مشابه
Model Selection in Historical Research Using Approximate Bayesian Computation
FORMAL MODELS AND HISTORY Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses...
متن کاملDeviance Information Criteria for Model Selection in Approximate Bayesian Computation
Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian inference using statistical summaries and computer simulations. ABC has become popular in evolutionary genetics and in other branches of biology. However model selection under ABC algorithms has been a subject of intense debate during the recent years. Here we propose novel approaches to model selection based o...
متن کاملApproximate Bayesian Computation
Just when you thought it was safe to go back into the water, I’m going to complicate things even further. The Nielsen-Wakely-Hey [5, 3, 4] approach is very flexible and very powerful, but even it doesn’t cover all possible scenarios. It allows for non-equilibrium scenarios in which the populations from which we sampled diverged from one another at different times, but suppose that we think our ...
متن کاملAdaptive approximate Bayesian computation
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.’s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine im...
متن کاملApproximate Bayesian Computation
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices amon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0146491